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Abstract

Recent whole-brain calcium imaging recordings of the nematode C. elegans have
demonstrated that the neural activity lives on a low-dimensional manifold. This
manifold displays clustering in neural activity space, both in long-lived states and
transient trajectories. Despite progress in modeling the dynamics with linear or locally
linear models, it remains unclear how a single network of neurons can produce the
observed features. In particular, if there are multiple clusters or fixed points in the data,
then in order to capture this feature a global model must be nonlinear. We propose a
global, stochastic, and parsimonious nonlinear control model which is parameterized by
four parameters that match the features displayed by the low-dimensional C. elegans
neural activity. In addition to reproducing the average probability distribution of the
data, long and short time-scale changes in transition statistics can be explained via
changes in single parameters. Some of these macro-scale transitions have experimental
correlates to single neuro-modulators that seem to act as biological “global variables”,
allowing this model to generate testable hypotheses about the affect of these
neuro-modulators on the global dynamics. This nonlinear control framework can also be
generalized to more complex systems with an arbitrary number of behavioral states.

Author summary

C. elegans neural activity and its relation to behavior is difficult to characterize as both
the dynamics and control are nonlinear. In our work we delineate a set of parsimonious,
nonlinear control models that can be minimally parameterized to have the same features
as those observed in the neural activity data. We analyze the behavior of the models
under different parameter regimes and fit a model to our C. elegans dataset. Nonlinear
interpretable models such as these may give us insight into C. elegans dynamics in ways
that linear models are unable to due to the intrinsic nonlinearities in the system.

Introduction 1

The emergence of large scale neural recordings across model organisms is revolutionizing 2

the potential for the theoretical modeling of how neuro-sensory integration, or control, 3

occurs. With the recent advancements in whole brain imaging technologies for the 4
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nematode C. elegans [1–3], the relationship between neural activity and behavioral 5

outcomes can be studied in a holistic fashion. More precisely, C. elegans provides a 6

unique opportunity to quantify neuro-sensory integration as it has only 302 neurons 7

whose electro-physical connectivity map (connectome) is known from serial section 8

electron microscopy. 9

Data from C. elegans neural recordings show that high-dimensional neuronal activity 10

produces dominant, low-dimensional patterns of activity across the connectome [4–9]. 11

These low dimensional representations have been considered in posture (behavioral) 12

analysis [10,11] as well as in the static analysis of calcium imaging data [12,13]. 13

Theories of neuro-sensory integration leverage these neural patterns in order to produce 14

control laws that dictate behavioral outcomes. A number of methods have recently 15

emerged characterizing control laws through regression to local linear models or hybrid 16

(switching) dynamical systems [14–18]. In contrast, if the control signal can be learned 17

from the data, then a single linear model can be used where the control itself effectively 18

accounts for the observed low-dimensional behavior [19]. This last modeling effort is a 19

first attempt to model the nonlinear global dynamics within a cohesive, unified 20

framework of linear control. 21

As exhibited in these representations, control theory is primarily posited as linear 22

model ẋ = Ax+Bu where x is the state space, the dot represents time differentiation 23

and u is the control signal. The matrices A and B characterize the intrinsic dynamics, 24

and how actuation forces this dynamics respectively. This linear formulation is 25

attractive because of the many theoretical guarantees that exist, including provable 26

control laws. Unfortunately, such a linear control law can only have a single fixed point 27

at the origin. Thus many nonlinear systems posit this control law near a local fixed 28

point in order to perform control tasks. This modeling paradigm for control has been 29

exceptionally successful across the engineering, physical and biological sciences. For 30

data-driven systems, the recently developed dynamic mode decomposition with control 31

(DMDc) provides a regression method for approximating A and B from data 32

alone [7, 19,20]. Alternatively, one can partition the state space behavior into a set of 33

distinct linear models, also known as hybrid or switching dynamical systems, where 34

linear control laws hold in each partition with different matrices A and B. This 35

partition is the strategy pursued in recent works [14–16]. In either case, enforcing 36

linearity is highly restrictive, especially when the data suggest that the global dynamics 37

is nonlinear. 38

In contrast to linear models which can only support a single fixed point in the 39

dynamics, nonlinear models offer a more flexible architecture for control, especially in 40

systems like the C. elegans where multiple behavioral states are clearly observed in the 41

data. We show that with minimal parametrization, we can construct a global nonlinear 42

model of the underlying C. elegans control structure. Our nonlinear control model 43

removes the need for multiple linear models and providing a parsimonious, global 44

control framework parameterized by only a few parameters and consistent with 45

experimental observations. 46

Nonlinear control theory takes the form ẋ = f(x) + g(u) where f(·) specifies the 47

nonlinear dynamics and g(·) specifies the actuation of this underlying dynamics. This 48

provides a theoretical framework for circumventing many of the standard limitations 49

inherited from linear control theory. This comes at the expense of provable 50

controllability criteria which can be rigorously stated in linear theory. A fundamental 51

benefit of nonlinear control theory is that one can posit an underlying model with 52

multiple fixed points where f(xj) = 0 and j = 1, 2, · · · , N . In the context of 53

neuro-sensory integration and C. elegans, these N fixed points correspond to distinct 54

behavioral states, i.e. forward or backward motion. These multiple and distinct states 55

are clearly observed in the data, Figure 1(b). Thus instead of regressing to the matrices 56
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A and B in constructing a linear model, we instead posit a global model whose features 57

are consistent with experimental observations [4], Figure 1(c). 58

Our model has the flexibility to describe C. elegans dynamics under a wide variety 59

of internal states and environmental stimulus. Quantitative work on postural analysis of 60

the behaving C. elegans has demonstrated there is low-dimensional structure on the 61

level of individual movements and body bends [10,11]. One size scale higher, on the 62

statistics of how often these movements happen, further work has shown the presence of 63

a few discrete clusters [21–24] or a spectrum [25,26] of behavioral ”strategies” that are 64

appropriate in different environments and may even be different between 65

individuals [27]. Recent modeling work has used a conceptual or data-driven model of 66

multiple fixed points in the neural landscape [5, 28]. However, it remains unclear how 67

statistics of transitions between behaviors can be controlled by global parameters, or 68

how individual trajectories through state space are affected in these cases. Our model is 69

able to reproduce the changes in statistics between the large-scale roaming and dwelling 70

behaviors via changing a single global parameter. In addition, this model explains short 71

time-scale bursts of reversals interspersed with extremely short-lived forward states. 72

Furthermore, our model encompasses the effect of neuromodulators on global 73

dynamics. Much work has been done in recent years to extend the understanding of 74

internal C. elegans dynamics beyond simple synaptic connections to include additional 75

layers, particularly the slower dynamics of neuromodulators [29,30]. In particular, single 76

molecules and simple neuronal circuits [22–24,26,31–34] have been found to change 77

global statistics related to fundamental behaviors, most clearly the frequency of reversal 78

initiation. Because our model is able to reproduce macro-scale behavioral changes with 79

a single parameter, we hypothesize that there may be a correspondence between some 80

neuromodulators and our model parameters. 81

As we will show, the global nonlinear model is minimally parameterized and provides 82

a parsimonious representation of the neuro-sensory integration of the C. elegans 83

nematode. These parameters have suggestive connections to experimental work, and 84

some may correspond to one or more neuromodulators. This framework is very general, 85

and can be readily applied to more complex model organisms. 86

Fig 1. C. elegans neural data with a fitted model. (a) Neural activity over time (b)
Neural activity in PCA space (c) Dynamical system model fitted to product the same
behavioral output in response to C. elegans control signals

Results 87

We introduce a flexible global model for the low dimensional activity of C. elegans 88

neurons. Our goal in constructing a model is threefold - (1) the general structure of the 89

model is motivated by dominant features observed in the data, (2) the model is flexible 90

enough to accommodate the full range of variability observed in C. elegans, and (3) the 91

model is minimally parameterized such that the modulation of only a few parameters 92

can generate this full range of variability. We start by observing the structure of the 93

data and posit a general model whose parameters can be tuned to generate activity that 94
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is analogous to the activity observed in the data. We then explore how experimentally 95

observed changes in C. elegans behavior can be explained by the modulation of single 96

parameters. Lastly we observe that the model can be fit to generate the correct activity 97

in response to the control signal derived from the data itself. 98

A Gaussian Mixture Model defines the structure of a nonlinear 99

control model 100

Fig 2. Normalized PCA trajectories of three C. elegans paired with probability
distribution functions of v1, the dominant mode activity. C. elegans have seven
behavioral states — forward (light blue), forward slow (dark blue), dorsal turn (orange),
ventral turn (yellow), reversal 1 (red), reversal 2 (pink), and sustained reversal (green).
C. elegans spend most of their time in a forward or sustained reversal state with
irregular transitions between these states.

Fig 3. (a) Combined normalized trajectories of five C. elegans and (b) the
corresponding probability distribution function. (c) The forward (blue) and sustained
reversal states (green) can be modeled with a Gaussian mixture model (d) while the
transitional states (red, yellow, orange, and pink) can be modeled with a uniform-like
distribution constructed with logistic curves.
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C. elegans have been proposed to have seven different behaviors — forward motion, 101

forward slow, dorsal turn, ventral turn, reversal 1, reversal 2, and sustained reversal [4]. 102

We measure the neural activity of five different C. elegans as their neural patterns 103

express activity corresponding to these different labeled behaviors. We achieve a 104

low-dimensional representation of the activity by performing PCA on the time series 105

data and focusing on the activity of the dominant PCA modes. Figure 2 shows the 106

normalized low-dimensional C. elegans activity and the probability distribution 107

functions of network states over time in the space of the dominant PCA mode. The C. 108

elegans neural network spends the majority of its time in a forward or sustained reversal 109

state with frequent transitions. Figure 3 shows the average dynamics in the dominant 110

feature space for five individual C. elegans, with the data labeled according to 111

behavioral responses [4]. The PCA activity in Fig. 3(a) has a dominant mode state 112

distribution that is approximated by a Gaussian mixture model combined with a 113

uniform-like distribution, Fig. 3(b). The Kullback-Leibler divergence score between the 114

data and fit curve is KL = 0.00047, indicating the proposed Gaussian with uniform 115

mixture model fits the data well. The data is decomposed into three constitutive 116

components — forward motion, backward motion, and turning — in Fig. 3(c) while 117

Fig. 3(d) shows each component’s isolated distribution along with the corresponding 118

portion of the fit curve. 119

This three-part decomposition of the data PDF is directly translatable to a 120

nonlinear control framework. Specifically, two fixed points have been identified, 121

necessitating a cubic dynamical system. Additional features of the data and how they 122

can be translated into a nonlinear dynamical system are described in Table 1. 123

C. elegans Dynamical System
Two stable fixed points Globally stable system with two sinks

System functions with variability System behavior remains qualitatively con-
stant under small parameter perturbations

Trajectories contain stochasticity System behavior remains qualitatively con-
stant with the addition of noise

Fixed point locations drift Behavior remains qualitatively constant de-
spite deformations and shifts to the system

Trajectories tend to follow set paths System path variability set with damping term

Table 1. Features exhibited by C. elegans neural activity paired with corresponding
dynamical system features.

Nonlinear global dynamical models for C. elegans 124

This feature space and model decomposition allows us to build a dynamical systems 125

model which accurately reproduces the statistical properties of the global dynamics with 126

minimal parametrization. The nonlinear parsimonious and global control model takes 127

the form 128

x′ = y (1)

y′ = f(x, β) + γy + u(t) (2)

f(x, β) = −(x+ 1)(x− β)(x− 1) (3)

where the nonlinear dynamics is prescribed by f(·) with dependence on β which 129

determines the location of the unstable fixed point. Additionally, there is damping via 130

the parameter γ and u(t) determines the control input into the system. 131
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We determine f(x, β) by finding a system and control signal that generate the same
qualitative attributes as the C. elegans PCA data, as outlined in the Methods section.
Due to the stochastic nature of the observed data, we additionally add stochastic terms
and arrive at the system:

dxt = ytdt+ σdWt

dyt = −(xt + 1)(xt − β)(xt − 1)dt+ γytdt+ u(t)dt+ σdWt

(4)

where β and γ parameterize the cubic dynamical system, and σ and dWt characterize 132

the Brownian motion which models the noisy fluctuations observed in experiments. 133

We find these parameter values by fitting the distribution of our model’s output to 134

the distribution exhibited by the C. elegans data as shown in Figure 4. This is a 135

non-convex optimization problem so our method for finding suitable parameter values is 136

to perform a grid search over the parameter space paired with gradient descent. While 137

this method finds a suitable collection of parameters, it does not guarantee the optimal 138

solution will be found. We find fitted model parameter values β = 0.03, γ = −1/2, 139

σ = 0.06, and u(t) = ±1 when t ∈ ton. The duration of the control signal is distributed 140

as dur = 0.2 + 1.8U(0, 1) while the control signal frequency is distributed like 141

ω = 1/(2.5 + U(0, 1)). 142

Fig 4. Fitted stochastic dynamical system with behavior that reproduces the
low-dimensional manifold of C. elegans neural activity. (a) Trajectories of fitted system
y′ = −(x+ 1)(x− 0.03)(x− 1)− 1

2y + u(t), u = ±1, control signal duration
dur = 0.2 + 1.8U(0, 1), control signal frequency ω = 1/(2.5 + U(0, 1)), and diffusion
constant σ = 0.06. (b) Probability distribution function of the fitted system (blue)
compared with that of the combined normalized C. elegans trajectories (grey). The
Kullback–Leibler divergence of the two pdfs, KL = 0.012, measures the extent to which
these two probability distributions differ.

Changes to a single parameter reproduce different long 143

time-scale behaviors of C. elegans 144

As shown in the methods section, this global model has three fixed points whose 145

stability is determined by the parameter β ∈ (−1, 1). The parameter γ determines the 146

linear growth/decay rate of each fixed point. The parameter σ controls the amount of 147

stochasticity in the system. All three parameters are estimated from the data in 148

Figure 3. Figure 5(a)-(c) shows the behavior of Eq.(4) as a function of β. For β = 0, 149

there is a symmetry between the two stable fixed states corresponding to forward and 150

backward motion, which reproduces the long time-scale distribution of behaviors across 151

individuals. 152

The statistics of reversal length and frequency change drastically across multiple 153

timescales during the life of a C. elegans. Our nonlinear control model is able to 154

reproduce three very distinct changes in state distribution and switching frequencies 155

seen in these experimental studies via modulation of a single parameters. 156
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The first well-studied change in these dynamics is the switch between dwelling and 157

roaming states [21–23,31]. Specifically, the frequency of reversals is much lower in the 158

roaming state, which facilitates the exploration of a larger geographical area. By 159

reducing the parameter ω which controls the frequency of the stochastic control signal. 160

Several neuromodulators [31] and individual neurons [23] have been implicated in this 161

behavioral change, and thus this model parameter may directly correspond to some 162

function of these chemicals or neuron activity levels. 163

Two additional behaviors that are not known to be related may in fact operate 164

according to a similar mechanism: reversal bouts, and an increase in reversals in an 165

aversive oxygen environment The reversal bout behaviors, as shown in Figure 5(d)-(e), 166

are long-lived behaviors that begin in a reversal state, move into a forward motion state 167

but then fail, and return to a reversal state several times in succession. This can be 168

clearly related to a change in the parameter β, which controls the stability of the fixed 169

points corresponding to forward and backwards motion. 170

A known method for experimentally destabilizing the forward state in C. elegans is 171

through a modification of their environment. In an environment with a preferred oxygen 172

level of 10%, C. elegans tend to have stable forward swimming behavior, Figure 5(f)-(h). 173

When the oxygen in their environment is increases to 21%, they exhibit more transient 174

forward swimming behavior, Figure 5(i)-(k), similar to the observed “reversal bouts”. 175

Increasing β, as shown in Figure 5(b)-(c), reproduces this unstable forward behavior 176

by retaining the stochastic control signals that would normally switch to a forward 177

motion state, but by reducing the stability of that fixed point so that the neural 178

trajectory immediately falls off and returns to a reversal state. We hypothesize that β, 179

like ω, also has a biologically correlated neuromodulator or set of neuromodulators and 180

that stabilization of this modulation system would remove the reversal bout 181

phenomenon. An additional testable prediction is that some subset of neurons 182

correlated with forward motion (e.g. the AVB and RIB pairs) or the ending of reversals 183

(e.g. the SMDD, SMDV, and RIV pairs) may be responsible for stabilizing the forward 184

state and others may be key for initializing the state. Opto-genetic manipulation of the 185

“initiating” neurons without the “stabilizing” neurons should simply produce a failed 186

forward initialization, as seen in the natural reversal bout. Similarly, inhibition of the 187

stabilizing neurons should make forward motion an inaccessible state. 188

Robustness of results to parameter variations 189

We now observe how modifying other system parameters affect the state distribution of 190

the nonlinear system’s activity. In Figure 6(a) we vary the right fixed point’s region of 191

stability by moving the location of the middle fixed point β. We observe the system 192

spends less time at the right fixed point with a smaller stability region. In Figure 6(b) 193

we increase the level of Brownian motion (σ) in the system and observe the variability 194

increases in the distributions as a result. In Figure 6(c) we observe that increasing the 195

control signal frequency increases the amount of time spend in a transitional state. 196

Figure 6(d) shows that increasing the damping strength decreases the distribution 197

variability. Observing these parameter variations holistically, we see that the nonlinear 198

model is able to perform the task of switching between fixed points under a wide range 199

of parameter values which insures the integrity of the system and indicates that C. 200

elegans dynamics, if comparable to this model, should be able to operate under a 201

diverse array of environments and internal states. 202
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Fig 5. Control model and C. elegans trajectories exhibiting unstable fixed points. (a) -
(c) Phase plane, nonlinear stochastic activity, and state distributions of Eq.(4) with
increasing β values. (a) β = 0 generates equally stable fixed points. (b) β = 0.6
generates a less stable fixed point which turns into a slow point as the fixed points
merge. (c) β, r2 ∈ C and the right fixed point is lost. (d) C. elegans PCA trajectory
during a reversal bout and (e) the corresponding distribution. The forward fixed point
is unstable during this interval. (f)-(h) C. elegans activity in a preferred 10% oxygen
environment which promotes stability in the forward state compared with (i)-(k) C.
elegans activity in an aversive 21% oxygen environment which destabilizes the forward
state. (f)-(g) PCA activity and distribution of a single C. elegans in the preferred
oxygen environment compared with the activity of this same C. elegans in the aversive
oxygen environment (i)-(j). Average distribution for 10 C. elegans in the preferred
environment (h) compared to the aversive environment (k). On average the forward
state is less stable in higher oxygen levels across multiple C. elegans.

Nonlinear model recreates dynamical behavior from control 203

signal in the data 204

We now take an alternative approach to fitting a nonlinear model to the C. elegans data. 205

Instead of generating a model that creates the correct distribution in response to 206
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Fig 6. State distributions of nonlinear models for various parameter regimes. (a) Fixed
point relative locations affects their stability. (b) Increasing levels of Brownian motion
(σ) increases the variation about the fixed points. (c) More frequent control signals
distribute the systems time more evenly between stable and transition times. (d)
Stronger damping in the system keeps trajectories close to fixed points.

randomly generated control signals as shown in Figure 4, we instead find a model that 207

produces the correct low dimensional activity in response to signals measured from the 208

C. elegans neural activity directly [19]. With this approach we can not only compare 209

state distributions, but can also reconstruct and compare neural activity in the original 210

high dimensional space. After fitting the low-dimensional models to respond correctly 211

to C. elegans control signals, we reconstruct individual neuron trajectories using our 212

dominant PCA modes. 213

Figure 7(a) shows a timeseries of the four behavioral control signals — dorsal turn 214

(DT), ventral turn (VT), reversal 1 (REV1), and reversal 2 (REV2). Figure 7(b) shows 215

the C. elegans neural activity data in PCA space colored by behavioral state along with 216

a fitted model controlled by the same C. elegans control signal and colored by this same 217

timeseries of behavioral states found in the data. The forward (blue) and backward 218

(green) timepoints are clustered together with the transition points spanning the path 219

between meaning that the model is able to transition to the correct location in PCA 220

space for each behavioral regime. This model was fit using a grid search of the 221

parameter space. Figure 7(c) shows the timeseries reconstruction of four neurons. The 222

model reconstruction fits the low-dimensional reconstruction well, however, neither 223

adequately represents the original timeseries as the first two modes in PCA space only 224

contain a moderate amount of the total variance (e.g. 22%). This model captures the 225

first-order structures in the system and can certainly be improved by using more PCA 226

modes. 227

Discussion 228

We have produced the first global, nonlinear model that can capture the dominant 229

features of low-dimensional neural data. The model incorporates a stochastic control 230

signal, similar to previous work on Stochastic Switching models, but extends previous 231
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Fig 7. Model is controlled by signals in data and used to reconstruct original neural
activity. (a) Four transition signal types — DT, VT, REV1, and REV2 — shift C.
elegans between forward and backward behaviors. (b) PCA space neural activity and
model activity controlled by data control signals. (c) Reconstructed activity of four
neurons. The nonlinear model reconstruction (yellow) approximates the low-dimensional
reconstruction (blue) yet with an enhanced response to changes in activity. Both the
model and data reconstructions poorly match the original trajectories (grey) due to the
information lost in the later modes.

work by explaining incomplete or unsuccessful switching seen in Reversal bouts as a 232

change in the stability of the underlying fixed point. This model is minimally 233

parameterized and changes in several parameters can reproduce changes in behavioral 234

distributions akin to that of known neuro-modulators, thus producing a unifying 235

framework for analyzing various changes in distributions of behavior at multiple 236

timescales. This framework produces testable predictions regarding the action of various 237

neuromodulators even when they are not normally present. In addition, the framework 238

for building this model can be easily extended to other complex systems with more or 239

different behaviors and fixed points. 240

Several modeling strategies have been used to model C. elegans behavioral and 241

neural dynamics, and they can be classified in two ways: direct models of the 242

trajectories in neuron space [15,17–19], and abstract Markov models [5]. The former has 243

the advantage of describing neuron-level dynamics at the cost of many parameters, 244

generally hundreds. On the other hand, Markov models do not make specific predictions 245

about neurons or trajectories on the low-dimensional manifold, but generally have a 246

small number of very interpretable parameters. Our model combines the strengths of 247

both approaches, producing a model of dynamics that is both directly connected to 248

neural activity and has only 4 parameters. It is unclear if these parameters have 249

biological correlates, but this is an exciting area for future experimental work. 250

This modeling strategy has a couple of limitations. In particular, the entire model 251

was constructed and fit using the first two PCA modes, which only account for 22% of 252

the variation in the data. It is almost certainly true that important activity is contained 253

in higher PCA modes, particularly when trying to incorporate more complex behaviors. 254
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In addition, it is unclear that PCA modes are the correct basis for producing models 255

whose behaviors have biological correlates. Work regarding an interpretable choice of 256

basis is ongoing (cite Bethany?), but will likely never have a perfect solution. 257

Connected to this issue, the model does not clearly distinguish differences between 258

Ventral and Dorsal turns. These behaviors are difficult to clearly separate in the first 259

two PCA modes, even though they are clearly mutually exclusive at the level of muscle 260

activation. In addition, the individual trajectories were considered stochastic and thus 261

the probability density functions were matched, instead of direct trajectory matching. 262

Further work to incorporate more subtlety and complex behaviors is the subject of 263

ongoing work. 264

The modeling strategy proposed in this paper used polynomials to design fixed 265

points and the transitions between them. Even if the “true” function form is more 266

complex, polynomials can be considered a Taylor expansion approximation of those 267

dynamics. However, no attempt was made to explicitly derive this functional form from 268

neuron-level nonlinearities, or to include information from the known connectome [35]. 269

A derivation from first principles would be an exciting advance and we hope that our 270

model, as one possible macro-scale model, can facilitate this sort theoretical 271

development. 272

Methods 273

We present a general nonlinear model that can be tailored to fit the features of a certain 274

class of data. More specifically, our general model is capable of describing datasets in 275

which the system transitions between multiple fixed points. The effect of each parameter 276

on the system’s behavior is straightforward and the locations and strengths of fixed 277

points and low-dimensional manifolds can be easily determined. Lastly we determine 278

the conditions necessary to make nonlinear control of such systems a possibility. 279

Nonlinear Dynamical Systems 280

Nonlinear dynamical systems are ubiquitous in the engineering, physical and biological 281

sciences for describing many complex phenomenon observed in a diverse number of 282

settings. Often, simple qualitative models with polynomial nonlinearities are capable of 283

providing remarkable insight into dynamical behaviors. The nonlinear pendulum, for 284

instance, can be approximate by a Taylor series expansion fo characterize the effects of 285

frequency shifts and harmonic generation that is observed in practice. Inspired by 286

well-studied nonlinearities, we consider dynamical systems of the general form 287

ẋ = f(x, β, γ) +Bu(t) (5)

We restrict our focus to polynomial equations with fixed points that can be 288

determined analytically: 289

x′ = y (6)

y′ = f(x) + γy + u(t) (7)

f(x) = a

n∏
i=1

(x− ri) (8)

where f(x) is a polynomial with a leading coefficient a and roots ri and γ is the 290

damping parameter. This is a second order nonlinear differential equation which can be 291

expressed as x′′ − f(x)− γx′ = 0. If γ = 0, the system is undamped and the differential 292
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equation becomes x′′ = f(x) which has an analytical solution. Often however, the 293

solutions are exceedingly complex and it is preferable to take a qualitative approach. 294

We choose a system of this form as the fixed points can be easily placed and assigned a 295

stability type (e.g. saddles, sources, sinks, or centers) through parameter selection. All 296

fixed points lie on the x-axis and are placed and manipulated by varying our polynomial 297

roots ri, while fixed point stability types are assigned by manipulating γ and a for a 298

given set of roots ri. 299

Damping parameter and manifold formation 300

Fig 8. (a) Strong manifold, γ = −5 << 0. Trajectories are quickly attracted to the
strong manifold even far from the fixed points. (b) Weak manifold, γ = −2 < 0. Near
(x, y) = (0, 0) the manifold is strong and points are attracted to the manifold. However,
away from (x, y) = (0, 0), the manifold dissipates and spiral sinks form at the outer
fixed points. (c) Without a damping term γ = 0 no manifold exists.

Damping in our nonlinear system generates the formation of manifolds or 301

low-dimensional spaces that attract trajectories. If we take |γ| to be increasingly large, 302

the vertical line T = γ that holds our fixed points in the trace-determinant plane moves 303

away from the origin and any spiral fixed points transition across the curve T = D2/4 304

becoming nodal fixed points. A polynomial invariant manifold appears, connecting the 305

leading eigenvectors of each fixed point’s linear system. We can find this invariant 306

manifold with an asymptotic expansion at the fixed points y =
∑n

k=1 αi(x− x∗)k. 307

Strong invariant manifolds funnel all points onto the same path making trajectories 308

highly predictable. Manifold strength can be determined analytically for a given system 309

by observing how far below the curve Det = Tr2/4 the fixed points fall in the 310

trace-determinant plane. As points approach this curve the manifold weakens and as 311

they surface above it the manifold dissolves in the given region. Figure 8(a) shows a 312

heavily damped system in which all fixed points are nodal or saddles, creating a distinct 313

subspace onto which trajectories converge while Figure 8(b) shows the same system but 314

with a weaker damping parameter, the manifold disappears at the outer fixed points 315

which have turned into spirals. Figure 8(c) shows this system with no damping, the 316

system is Hamiltonian. 317

Nonlinear Control 318

Linear control is a well established area of interest that involves moving a fixed point or 319

stabilizing certain dynamics []. Nonlinear systems can be analyzed and controlled using 320

linear approximations when dynamics are near a fixed point. However, far from fixed 321

points dynamics cannot be presumed to reliably adhere to the linearly approximated 322

dynamics []. In our work we characterize control methods for moving between fixed 323

points in our nonlinear, cubic polynomial dynamical system. Specifically, we exclusively 324

consider control that can be achieved with transient control signals. Such signals briefly 325

modify the dynamics, allowing a system to move out of the sphere of influence of a 326

stable fixed point, before allowing the underlying dynamics to dictate dynamical 327

trajectories to one of the fixed points. We consider three types of transient systems 328
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Fig 9. Dynamical system trajectories under the influenced of control signals that make
the system chaotic (yellow), Hamiltonian (red), or dissipative (blue). (a) After t = 2.3
seconds, a small circle of points under chaotic dynamics will spread apart, under
Hamiltonian dynamics they maintain the area they encapsulate, and under dissipative
dynamics they converge to a low-dimensional subspace. (b) After more time, t = 3.8
seconds, the space encapsulated by the chaotic points grows even larger and more
deformed, the Hamiltonian space remains constant, and the dissipative system moves
along it’s subspace until it reaches a fixed point.

(illustrated in Fig. 9) that a control signal can achieve and consider their merits and 329

inadequacies in light of our goal of controlling the system’s location over time. 330

(a) Chaotic systems:. Initially, we try escaping a stable fixed point and moving to 331

another by changing our system’s stable fixed points to unstable fixed points. In our 332

model this is achieved by setting γ > 0. While this modification to the system allows us 333

to leave the fixed point’s vicinity, it cannot be used as a control signal as the location of 334

our system under such dynamics becomes unknown. Converting our fixed points to 335

sources turns our system chaotic. A chaotic system cannot reliably move to a desired 336

state and therefore control signals that create this type of uncertainty in the system are 337

inadequate. 338

(b) Hamiltonian systems:. A feasible way of moving between fixed points is with a 339

Hamiltonian system. Because we cannot change the stability of the fixed points in our 340

system if we want to maintain control, we must instead eliminate the fixed points. If 341

γ = 0 our system is Hamiltonian. When we eliminate our local fixed point under this 342

condition, the system leaves the region in a predictable trajectory. While this method of 343

control may bring our system to the locations of the other fixed points in the default 344

system, the termination of the control signal must be precisely timed in order to stay at 345

these fixed points. Hamiltonian systems do not converge and therefore cannot be used 346

for control unless the control signals can be timed well. 347

(c) Dissipative systems:. The ideal way to transition between fixed points is with a 348

dissipative system. Not only are dissipative systems highly predictable, but they contain 349

stable fixed points, allowing controlled systems to converge to a point at or near the 350

target point in the default dynamical system. Our system is dissipative when γ < 0. If 351

we eliminate a fixed point under these conditions our controlled system will converge to 352

the destination region instead of passing through, as with the Hamiltonian system. 353

With a dissipative system, control can be achieved despite parameter variability, 354

stochasticity, and imprecise control signal timing, making it the objective when 355
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designing a controlled system. 356

Figure 9 shows the behavior of chaotic, Hamiltonian, and dissipative controlled 357

systems over time. In all three cases, points start in a close circular region and then 358

progress in ways stereotypical of their system type. The area encapsulated by the 359

chaotic system’s points expands and deforms unpredictably over time. In contrast, the 360

dissipative system’s points contract, converging to a discoverable low-dimensional space 361

that they follow to a stable fixed point. The area encapsulated by the Hamiltonian 362

points neither expands nor contracts, keeping its form as the system’s points follow 363

their orbital path ad infinitum. 364

Github repository 365

The github repository Celegans nonlinear control contains code that reproduces 366

select results from this paper and can be found at: http://www.latex-tutorial.com. 367
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Appendix

Fixed Points and Stability

To find the fixed points of the system we set (x′, y′) = (0, 0) and find that all fixed
points lie on the x-axis y = 0 at the solutions to f(x) = 0. In terms of our system
parameters the fixed points are denoted by (x∗, y∗) = (ri, 0). The Jacobian of our
system of differential equations tells us how the system behaves at the various fixed
points:

J =

[
0 1

f ′(x) γ

]
(9)

The trace and determinant of the Jacobian determine whether fixed points will be
sources, sinks, saddles or centers which are mapped in the trace-determinant
plane [36,37]. We can evaluate how these types occur and their change in response to
the systems parameters β and γ. Note that

Tr(J) = γ (10)

Det(J) = −f ′(x) . (11)

Figure 10 shows that in the trace-determinant plane all fixed points lie along the
vertical line Tr(J) = γ located at Det(J) = −f ′(x∗). Figure 10(a) shows the phase
portrait of a system with two spiral sink fixed points and one saddle. We evaluate the
determinant at the fixed points Det(J∗) = −f(x∗), Figure 10(b), and map them onto
the trace-determinant plane, Figure 10(c), showing that our classifications match the
fixed point types we observe in the phase portrait.

Changing parameter values changes our location in the trace-determinant plane.
Varying γ changes the trace but not the determinant of the system. For γ < 0 all fixed
points are either saddles or stable fixed points — spiral sinks or nodal sinks. However, if
γ > 0, all fixed points are either saddles or unstable sources — nodal or spiral. When
γ = 0 our system only contains saddles and centers. We observe from this that the
damping term γ alters the stability but not the location of fixed points. Parameter a
does not change the locations of our fixed points but does affect the determinant of our
system. Given that γ < 0, changing the sign of a will change our fixed points from
stable sinks to unstable saddles and visa-versa. Varying ri changes both the location
and type of fixed points as fixed points can combine, disappear and appear. Because
separate parameters control the trace and determinant of the system we can shift them
independently.

Approximations around sets of fixed points

It is well known that nonlinear systems can be approximated with a linear system near
fixed points. We extend this technique to approximate nonlinear systems about a
number of fixed points with a lower-order system and the dynamics away from all fixed
points with only the highest order term. To approximate a system about a single fixed
point x∗ we keep the term with this root and make substitutions for all other terms
Eq. 12.

y′ = a(x− r∗)
n∏

i=1

(r∗ − ri) (12)

The linear approximation is analogous to the Jacobian approximation of the system.
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Fig 10. (a) Phase portrait of the polynomial dynamical system x′ = y,
y′ = −(x+ 1)(x)(x− 1)− y. This system has a saddle at x∗ = 0 and spiral sinks at
x∗ = ±1. (b) The determinant of the Jacobian Det(J) = −f ′(x) = 3x2 − 1 determines
fixed point types at x∗, the roots of f(x) = 0. We find that Det(J∗) = −1, 2. (c) We
plot the fixed point trace-determinant values in the trace-determinant plane in order to
find their types. All fixed points lie along the vertical line T = γ. Two of the fixed
points are located in the sink region while one point is located in the saddle region of
the plane matching what we observe in the phase portrait.

Fig 11. The dynamics of the polynomial system x′ = y, y′ = −x(x− 1)(x+ 1
2 ) is

dominated by different factors depending on the scale and distance from certain fixed
points. Near fixed points only the linear terms contribute to the dynamics while far from
all fixed points, the leading order cubic terms determines global dynamics. Quadratic
terms play a leading role in the intermediate regions. (a) Near the fixed point x∗ = − 1

2
the system can be approximated by a single factor y′ ≈ − 3

4 (x+ 1
2 ). (b) If we zoom out

to encapsulate the the region around fixed points x∗ = − 1
2 and x∗ = 0 but excluding

x∗ = 1, the system can be approximated with two factors corresponding to the enclosed
fixed points, y′ ≈ x(x+ 1

2 ). (c) If we zoom out even farther to the region enclosing all
fixed points we can approximate the system using the highest order term y′ ≈ −x3.

Global stability

Stability about individual fixed points do not tell us whether the system is globally
stable. Globally unstable systems are undesirable because additional measurements
must be taken in order to monitor whether the system is entering a region in which
solutions are unbounded and extra control procedures must be established to ensure the
system does not enter an unstable region or to bring it out of this region if it does enter.
Global stability can be determined by simplifying the dynamical system to the
approximate system as |x|, |y| → ∞. The polynomial in y′ can be approximated with its
leading order term giving us the following approximate system away from all fixed
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points.

Jglobal =

[
0 1

anxn−1 γ

]
(13)

Det(Jglobal) = −anxn−1 > 0 if n ∈ O, a < 0, γ < 0 for all x indicating that under these
parameter conditions the system is globally stable. If we have a globally stable system
we need control regimes only for moving the system out of regions controlled by various
fixed points and do not need extra controls to keep the system within stable regions.

System Shifts and Deformations

The Polynomial Dynamical Systems we have explored are the normal forms of a larger
set of nonlinear dynamical systems whose qualitative activity is the same as one of the
normal form expressions, yet whose fixed points are not necessarily on the x-axis. These
systems are shifts or deformations of the normal form expressions and can be mapped
to their corresponding normal form system using a transform a variables that maps all
fixed points to the x-axis. The systems activity can be more easily analyzed in the
normal form and since the systems are topologically equivalent, all results found in the
normal form analysis apply to the original system. Figure 12 shows a normal form
system as well as two topologically equivalent systems that can be mapped to it through
a change of variables. In the first system the system is merely shifted while the second
system has undergone a deformation. Because our characterized collection of normal
form systems can be mapped to a large variety of topologically equivalent systems with
fixed points anywhere in the (x, y) plane, our set of simple models can be used to
understand and model the behavior of systems that express the same qualitative
behavior as a normal form system.

Fig 12. Dynamical system in normal form and two topologically equivalent systems
expressing the same qualitative behavior. (a) Normal form expression with dynamics
x′ = y, y′ = −x(x− 1)(x+ 1)− y (b) System shifted under the mapping
(u, v) = (x+ 1, y + 1). (c) System deformed under the mapping (u, v) = (x, y + x2).
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