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Recent whole brain imaging experiments in C. elegans have revealed
that the neural connectomic dynamics live on a low dimensional man-
ifold with stereotyped transitions between behaviors. Typical theo-
retical efforts use data to produce a set of local linear models char-
acterizing the data, but it is unknown how a single, global neural
network model can generate the observed dynamics. We propose in-
stead a control framework to achieve a global model of the dynamics,
whereby underlying linear dynamics is actuated by sparse control
signals. The method learns the control signals in an unsupervised
way from data, then uses Dynamic Mode Decomposition with control
(DMDc) to create the first global, linear dynamical system that can re-
construct whole-brain imaging data. These internally generated con-
trol signals are shown to be implicated in transitions between behav-
iors. In addition, we analyze the time-delay encoding of these control
signals, both reproducing known neural encodings and showing that
these transitions can be predicted from previously unknown neurons.
Moreover, our decomposition method allows one to understand the
observed nonlinear global dynamics instead as linear dynamics with
control. The proposed mathematical framework is generic and can
be generalized to other neurosensory systems, potentially revealing
transitions and their encodings in a completely unsupervised way.
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The nematode Caenorhabditis elegans (C. elegans) is an1

ideal model organism as it is comprised of only 3022

sensory, motor and inter-neurons whose stereotyped electro-3

physical connections (i.e. its connectome) are known from4

serial section electron microscopy (1). Indeed, C. elegans is per-5

haps the simplest biophysical organism to display many of the6

hallmark features of high-dimensional networked biological sys-7

tems, including the manifestation of low-dimensional patterns8

of activity associated with functional behavioral responses.9

Thus the nervous system encodes behavior by reducing the10

high-dimensional representation of the environmental stimulus11

into a much lower representations of motor command (2–6).12

Low dimensional representations have been separately con-13

sidered in posture (behavioral) analysis (7, 8) as well as in14

the static analysis of calcium imaging data (9, 10). Under-15

standing the computational processing that transforms sensory16

input into motor representations requires the ability to record17

the activity of sensory neurons, decision-making circuits, and18

motor circuits in a behaving animal, something that is now19

largely available with modern imaging of C. elegans. Real-20

time, whole-brain imaging of these non-spiking neurons allows21

for data-driven discovery of the governing dynamics of the22

system and the low-dimensional manifold (coordinates) on23

which neural activity exists (11). In this work, we exploit this24

new, whole-brain imaging technology to posit a data-driven25

model of neurosensory integration in C. elegans, showing that a26

global, linear control framework alone explains and reproduces27

much of the activity of the network. 28

It has long been observed that C. elegans produces a small 29

number of stable discrete behaviors (e.g. forward and back- 30

ward motion, and turns), and that these behaviors change 31

both spontaneously and very quickly in response to external 32

stimuli and/or stimulation of even a single neuron (12–14). A 33

potential dynamical systems explanation for this observation 34

is that of discrete behaviors as fixed points on an underlying 35

manifold with some transition signals that move the system 36

between them. A purely linear model cannot produce multiple 37

fixed points, but switching (hybrid) linear dynamical systems 38

methods (15–18) circumvent this by segmenting the dynamics 39

into patches with different dynamics (and thus different fixed 40

points) in each patch. An alternate method uses different 41

phase loops and the phase along them to predict behavior, 42

producing conserved dynamics in a special phase space (19). 43

Recent efforts have also attempted to explicitly model the non- 44

linear connectomic dynamics (6, 20–25), but this has currently 45

been limited to subsets of neurons and has moreover had diffi- 46

culty capturing multiple behaviors. This work instead focuses 47

on how a single, global, neuron-level model with simple and 48

interpretable additions can capture the nonlinear dynamics 49

Significance Statement

Biological organisms are very well adapted to the environments
they live in, and can perform tasks that even our most advanced
engineered cannot. For example, the soil-dwelling nematode
C. elegans lives in a noisy environment made of vastly differing
materials and viscosities. Sensory stimuli come from many
different channels, and yet this “worm” is able to consistently in-
tegrate them and react appropriately, all with only 302 neurons.
We use data-driven techniques to analyze real-time neuronal,
whole-brain recordings in order to understand the separation
of the system into a simple intrinsic linear dynamics and a
more complex set of internally generated control signals. Our
3-step modeling framework can reproduce whole-brain imaging
datasets from initial conditions and an interpretable control sig-
nal using Dynamic Mode Decomposition with Control (DMDc).
Biologists can use each step of our framework to learn, possi-
bly in new organisms: 1) where behavioral transitions occur;
2) about the complexity of different behaviors; and 3) which
neurons produce the transition signals. Theorists can use this
framework to: 1) build low-dimensional models characterizing
connectomic dynamics; 2) identify distinct system states; and
3) build closed-loop feedback models.
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Fig. 1. A 3-step framework for modeling neurosensory integration. 1) Transition signals are learned from data with an assumption of linear dynamics. 2) A DMDc model is
learned which uses dynamics, transition signals, and actuation. These are global models, and are capable of reconstructing much of the data dynamically from an initial state.
3) Where and at what timescales control signals are encoded in the neural activity is studied using sparse linear models.

simply by appropriate framing as a control problem.50

The recent availability of real-time calcium imaging data51

allows for a neuron-level data-driven approach. A full model of52

C. elegans neural activity should describe how multiple states53

are produced in a single network, and how dynamics operating54

at multiple scales are integrated to produce the states and55

transitions between them. This can be naturally expressed56

mathematically using control theory, with the data-driven57

method of Dynamic Mode Decomposition with control (DMDc)58

(4, 26) providing a regression framework for approximating59

linear control laws. We propose a mathematical framework60

for building such a model via a step-by-step analysis of the61

required components necessary for DMDc, generating inter-62

pretable and testable hypotheses at each step. This framework63

is able to 1) learn known and novel transition signals; 2)64

reconstruct entire datasets, including with multiple states,65

demonstrating that additional nonlinearities are not needed66

to describe many of the interactions in the system; and 3)67

analyze the timescales and locations of where these transition68

signals are encoded. We provide code written in MATLAB69

(27) for a full analysis pipeline that uses raw data and, if avail-70

able, external behavioral labels to discover both the intrinsic71

dynamics and the effects of control on the state of the system.72

Data-Driven Methods73

Our analysis relies on two established mathematical methods:74

DMDc and sparse optimization. A brief summary of each is75

given below.76

Dynamic Mode Decomposition with control. Our data-driven 77

strategy is based upon the dynamic mode decomposition 78

(DMD). DMD provides a linear model for data matrices con- 79

structed using temporal snapshots of the state space, X = 80

[x1 x2 . . . xm−1] and X′ = [x2 x3 . . . xm] where xj = x(tj). 81

Specifically, it finds the best fit linear dynamical system 82

X′ = AX [1] 83

There are a number of variants for computing A (4), with the 84

exact DMD simply positing A = X′X† where † denotes the 85

Moore-Penrose pseudo-inverse. 86

DMDc (26) capitalizes on all of the advantages of DMD 87

and provides the additional innovation of being able to disam- 88

biguate between the underlying dynamics and actuation. For a 89

control input matrix U = [u1 u2 . . . um−1] where uj = u(tj), 90

DMDc regresses instead to the linear control system 91

X′ = AX + BU. [2] 92

Note that DMDc uses only snapshots in time of the state space 93

and control input, making it compelling for systems whose 94

governing equations are unknown. The DMDc equation is 95

graphically represented in Fig. 1. The governing matrices (A 96

and B) along with the control signal (U) produce a predictive 97

model, such that the state of the system far in the future 98

can be predicted. For instance, the third time step can be 99

estimated from the first via: 100

x3 = A(Ax1 + Bu1) + Bu2 [3] 101
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Fig. 2. Transition signals in C. elegans: Top: A calcium imaging trace of a neuron
connected with the discrete reversal behavior. Behavioral labels are determined
by experimentalists, as described in (9). Green=Forward; Yellow=Reversal; Dark
Blue=Ventral Turn; Light Blue=Dorsal Turn. Below: These labels can be reframed as
“onset” signals, and are characteristically sparse in time.

Figure 4 refers to “full reconstructions” of the datasets, i.e.102

the prediction of snapshots up to 3000 time steps in the future103

given the initial data snapshot (x1) and the full time series of104

the control signals (U).105

Learning control signals via sparse optimization. The DMDc106

algorithm requires knowledge of the linear control signals U.107

Expert-identified state labels and an example neuron that108

displays strong state-dependent behavior are shown in figure 2.109

However, these are only available because of the decades of C.110

elegans experimental work identifying 1) discrete behavioral111

states and 2) the command neurons for each activity. For112

new organisms, and in order to generate hypotheses about113

potential new states in C. elegans, the unsupervised problem,114

i.e. learning the signal directly from data, is of critical interest.115

DMDc (2) can be thought of as an error minimization116

problem over the dynamics matrices, A and B. If the control117

signal is unknown, the minimization must be extended to the118

control signal U itself. However, there is now a trivial solution119

where the control signal dominates the model: X2 = BU with120

A = 0. For this reason, an assumption must be made about121

the control signals. In this case, the statement that these122

signals are sparse is directly biologically interpretable, and123

means that the transitions between states should be rare as124

a percentage of frames. This “sparsity constraint” can be125

directly expressed in the language of optimization, i.e. the `0126

norm:127

min
A,B,U

[
||AX1 + BU−X2||2 + λ ||U||0

]
[4]128

Directly solving this optimization problem is extremely diffi-129

cult, although there are efficient algorithms in certain cases130

Algorithm 1 Unsupervised Learning of Control Signals
1: procedure LearnControllers(r)
2: U0 := InitializeU(r)
3: S := InitializeSparsityP attern(U0)
4: for i← 1, MaxIter do
5: A, B = SolveAB(X, Ui−1) . Solves eq. 2
6: Ui = SolveU(X, A, B)
7: S = UpdateSparsityP attern(S, Ui)
8: Ui(S) = 0

(28). More recently, a convex relaxation of the `0 to an `1 131

norm is often solved (29), though this has been recently shown 132

to make mistakes (30). We use a different approximation, the 133

sequential least squares thresholding algorithm (31), which 134

has been shown to converge to the minima of the original 135

`0 problem (32). The code is outlined in algorithm 1 and 136

more detail is given in the supplement. The matrix U in this 137

algorithm is additionally constrained to be positive, for better 138

interpretability as “on” transition signals. 139

Variable selection via sparse linear models. If internally gen- 140

erated control signals are present, then there are two options: 141

they are random and fundamentally unpredictable, or they are 142

encoded in the network. Although there is almost certianly 143

some amount of stochasticity in the true biological system, 144

any encoding at all can be used to study the initiations and 145

precursors of the behavior. Mathematically, this is a variable 146

selection problem: given the data, which few neurons predict 147

the transitions? In this paper we additionally use time-delay 148

embedding where data from further in the past is utilized: 149

U = K1X1 + K2X2 + ... [5] 150

There are multiple methods that are often used to perform 151

this variable selection task (33). However, these methods may 152

make mistakes in their selections (30), and in general it is 153

unclear how unique the selection is. The behaviors of C. ele- 154

gans have been well studied, and each onset is associated with 155

well-known neurons. Variable selection methods will almost 156

certainly discover these well-known neurons, but by exploring 157

further in the “elimination path”, less obvious encodings can 158

be discovered. Algorithmically, this is the sequential removal 159

of the most important neuron for all time delays, and then 160

a re-fitting of the sparse model. If the quality of the recon- 161

struction does not degrade along the elimination path, the 162

signal (U) must be distributed throughout the data (X). The 163

quality of signal reconstruction is defined here as the number 164

of false positives and false negatives in the reconstructed signal. 165

Event detection is defined as a number of frames above a hard 166

threshold, as shown in Fig. 5 and discussed in the supplement. 167

Results 168

Known transitions are discovered and characterized. Experi- 169

mentalists have long separated behavior into discrete behaviors 170

through careful study of individual neurons. However, open 171

questions remain about the number of behaviors that exist 172

and how discrete they are. Some works have posited up to 173

six forward motion states and three reversal states, multiple 174

turning subtypes, and even a continuum of behaviors (34). 175

As Fig. 3 shows, using unsupervised optimization three be- 176

havioral onsets can be discovered: Reversal, and Dorsal and 177
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Fig. 3. Control signals can be learned from data via algorithm 1. a-d) The onset of well-known states as determined by experts (above) and as learned (below). e) Correlation
between expert and learned signals across 15 individual datasets. Reversals (Rev), Dorsal (DT) and Ventral Turns (VT) are consistently learned, but Forward state (Fwd)
onsets are never significant.

Ventral turns. In particular, the single Reversal onset signal178

for each individual suggests that this transition is fundamen-179

tally the same within individuals, with variability produced by180

activation amplitude not a different direction in neuron-space.181

However, in no individuals could a signal correlated to the182

onset of Forward motion be discovered. This lack of a discov-183

ery can be interpreted as the underlying neural mechanism184

producing forward motion being fundamentally different. It is185

well known that different, dedicated sub-networks of neurons186

are active in forward and backwards motion (1), but they are187

often modeled as mirror images of each other (25). This result188

implies that for the onset of these behaviors, forward motion189

is significantly more complex than reversals, not simply that190

the underlying networks are physically distinct.191

A global, linear system with control reconstructs entire time192

series. The manifold observed in C. elegans neural dynamics193

cannot be described by a purely linear model due to the194

presence of multiple stable global behaviors, as shown in Fig.195

4.b. Specifically, linear models can only admit a single fixed196

state. However, the majority of neurons can be reconstructed197

using our controlled, global, linear dynamical system due to198

the sparse transition signals as shown in Fig. 4.c for expert199

hand-labeled signals and Fig. 4.d for signals learned from data.200

Each time snapshot of this data is reconstructed analogously201

to equation 3, and then projected onto the two dominant PCA202

modes of the original data so that each panel in Fig. 4.a-d is203

in the same coordinate space. Because this is a global linear204

model that uses a single framework for the entire state space,205

the need for additional nonlinear modeling can be constrained206

to particular groups of neurons and well-defined time windows.207

In particular, across individuals the reversal class of neu-208

rons is captured very well by the supervised control signal209

as shown in Fig. 4.j and thus, up to encoding the transition210

signal itself, the relevant subnetwork does not appear to re-211

quire nonlinearities. This means that future efforts related to212

nonlinear modeling should concentrate on the small window213

of time during the onset of the behavior, instead of the entire214

neural trace where linear models hold. In addition, the type of215

nonlinearity required to more fully model this class of neurons216

is characterized: fast and short-lived spike-like activations.217

Turns are also largely captured, as shown by the high cor-218

relation for the light and dark blue boxplots. The neurons219

involved in turning have a large number of smaller events, as220

shown in the SMDDL reconstruction Fig. 4.f; these do not221

lead to one of the four state transitions identified by experi-222

mentalists in this dataset (CITE timescale nesting paper?), 223

but may correspond to an additional state as discussed in the 224

supplement. However, the unsupervised method does pick up 225

on these smaller events and reconstructs them well Fig. 4.h, 226

but over all datasets there is much more variability as shown 227

in Fig. 4.j. 228

The last group of neurons, those related to forward motion, 229

has a very large variability of correlation between the data 230

and reconstructions, implying that this state requires nontriv- 231

ial nonlinearities throughout the time series to capture. It 232

may be continuously parametrized instead of a simple “on” 233

transition signal at the onset, for example by speed, steering 234

(35), or tracking (36). Some recent experimental work (37) 235

characterizes this asymmetry between Forward and Reversal 236

states as due to intrinsic bias towards the Forward state, and 237

this result is consistent with that interpretation but adds that 238

the Forward state is significantly more complex. 239

To further characterize the effects of the control signals on 240

the ability of this framework to capture the neural dynamics, 241

partial models were created with a subset of control signals. 242

Expert-labeled partial models are shown in Fig. 4.k. Adding 243

Reversal-onset signals alone does not produce a model that 244

captures the data better than a straight-line fit to the data, but 245

the combination of Reversal and Turning signals is significantly 246

better. The subsequent additional of Forward control signals 247

is, remarkably, useless and is another line of evidence showing 248

that this behavior is truly different from the simpler Reversal 249

state. 250

Transitions are encoded in previously unknown neurons. 251

Having shown the control signals to contribute significantly 252

to the reconstruction of the data, we reconstruct the control 253

signals themselves using time-delay data matrices and sparse 254

linear models as shown in step 3 of Fig. 1 according to equa- 255

tion 5. As described in (10), each of the four interpretable 256

transition signals shown in figure 3 are hand-labeled using 257

the activity of certain well-known neurons. Thus, it is not 258

surprising that these signals can be reconstructed from data 259

when those well-known neurons are included. In particular, as 260

they were used to define the Dorsal Turn behavioral states, an 261

excellent validation is that the SMDDL/R pair of left/right 262

neurons consistently encodes this control signal, as Fig. 5.a 263

shows. 264

However, as the elimination path is explored further, it 265

is revealed that these well-known neurons can be eliminated 266

from the sparse models and the transition signals can still be 267
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Fig. 4. 2d PCA projections of a) data, b) an uncontrolled “null” model, c) a “supervised” model using expert-determined control signals, and d) an “unsupervised” model that
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reconstructions from the unsupervised model. i-k) Correlations across datasets between data and reconstructions, split up into 4 different neuron groupings for interpretability.
i) Baseline null models. The left-hand side is simply fitting a straight line to a neural trace. The right-hand side corresponds to the uncontrolled model in panel (b), and is
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neuron grouping the expert signals produce significantly better fits. k) Partial supervised models, as more signals are added. Shown are additive improvements, i.e. how much
better each partial model is than the one immediately to the left. Specifically, “baseline” of a straight-line fit is subtracted from the Reversal (left-hand side) set, and the Reversal
+ Turn model correlations are subtracted from the cumulative Forward (right-hand side) set, which has Reversal + Turn + Forward control signals.

reconstructed as shown in 5.b. Indeed, Fig. 5.a and and 5.b268

look nearly identical, and Fig. 5.c quantifies this using the269

percentage of false positives and negatives. Fig. 5.c also shows 270

more of the elimination path and when the reconstructions 271
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finally break down. Fig. 5.d and 5.e show the how K matrices272

in equation 5 change as neurons are removed. Taken together,273

these results reveal previously unknown neurons that can274

successfully predict control signals shown to be important275

to reconstructing the full neural manifold. However, only276

rows with names are neurons that have been connected to the277

stereotyped C. elegans connectome and can thus be identified278

across individuals; rows with numbers cannot be so compared.279

This work identifies sets of unknown neurons that could be280

investigated in further experiments, and the timescale at which281

they are relevant.282

Discussion283

We have presented the first data-driven model that uses a sin-284

gle set of intrinsic dynamics that can reconstruct the multiple285

behavioral regimes present in a real animal and transitions286

between them. The fact that this controlled linear model287

accurately reproduces both short and long time-scale dynam-288

ics places clear restrictions on the need, specifically the lack289

thereof, for nonlinearities in this system, and provides hypothe-290

ses about the neurons that may contain those nonlinearities291

and their role in the global dynamics of the system. In addition,292

we have embedded this model in a mathematical framework293

of feedback and control, which can be generalized to other 294

organisms or to include hypothesized nonlinearities. 295

Much excitement has been generated by the availability 296

of the C. elegans physiological connectome, and one hope of 297

data-driven modeling efforts is to produce a functional con- 298

nectome that can complement the physiological data. The 299

DMDc in this paper is similar to several algorithms in the 300

engineering literature that attempt similar network reconstruc- 301

tion tasks, namely System Identification (38). One strategy 302

to fully disambiguate the effects of the intrinsic dynamics and 303

the external control signals uses known external perturbations 304

should be applied and the system response measured. Such 305

perturbations are not generally available in biological systems 306

and thus the data collected are “uninformative” (39) in the 307

sense that the underlying structure cannot be determined. 308

A limitation of this model is that it is not generative; it 309

cannot be used to predict a system response that includes 310

transitions to novel stimuli. To accomplish this, the transition 311

signals must be written as a function of the data. Step three of 312

our method does this with a linear encoding and demonstrates 313

that the signals can be successfully reconstructed with all 314

neurons to a certain level of accuracy. If this level of accuracy 315

were sufficient, then the system would be fully linear and an 316

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Fieseler et al.
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uncontrolled model would produce a good reconstruction, as317

is clearly not the case. Recent methods for incorporating318

nonlinearities into controlled systems (e.g. (31, 40)) have the319

potential to create a fully closed-loop feedback system and320

this is an active area of further research.321

A potential criticism of this method is that we have used322

discrete labeled states in our model, despite ongoing debate re-323

garding how uniform “states” in C. elegans are across instances,324

and if they should be subdivided or are simply continuous325

(34). We have contributed to this debate by providing evi-326

dence that the reversal and turn states in fact appear to be327

simple and have well-defined initiation signals, but that the328

forward “state” is much more complex. We argue that this is329

an example of a strength of this methodology: the fact that330

a state cannot be reconstructed gives additional information331

about that state, and about its complexity in relation to other332

states.333

An alternate approach to modeling complex systems in334

order to understand structure is to use locally linear models335

(15–18). In this methodology, the initial network as described336

by the matrix Ai is replaced by a new matrix, Ai+1, at337

certain change points. These have achieved great success in338

reconstructing nonlinear datasets and is an active field in339

machine learning research. However, it is difficult to interpret340

what such a replacement of the underlying dynamics would341

mean biologically, particularly if many separate matrices Ai342

are required. On the other hand, the language of control343

theory from engineering meshes directly with the biological344

intuition that certain states are initiated by relatively unique345

signals produced by a small number of neurons. We believe346

that our framework for constructing a single, global model of347

the dynamics of this neural system is promising not only in348

its ready generalizability to include nonlinearities, but also in349

its biological interpretability.350

We have produced the first, to our knowledge, global data-351

driven model of both the intrinsic and control dynamics of C.352

elegans. We hope this work can contribute to the realization353

of fully in-silico ablation and actuation experiments, the holy354

grail of C. elegans simulation.355
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