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Simultaneous Learning of Control Signals,
Parameters, and Model Structure
C. Fieseler, J. N. Kutz

Data-driven methods for approximating the underlying dynamics of
a complex system have emerged in many different fields of science
and engineering. Many approaches posit an autonomous model for
the dynamics, such that in the limit of no noise the future state of
the system is predictable entirely by its past. Several established
methods, such as Dynamic Mode Decomposition (DMD) and Sparse
Identification of Nonlinear Dynamics (SINDy), have achieved great
success in simultaneously predicting the structure of unknown dy-
namical systems and their parameter values in autonomous systems.
However, many systems of interest, particularly in biology and neuro-
science, are connected to an outside environment and thus are not
autonomous, and in many cases the stimulation is completely un-
known. We propose an extension of these established methods for
simultaneously learning an external control signal along with model
structure and parameter values. This requires first extending the
methods to a Bayesian framework, and successfully separates the
underlying dynamical systems and control signals even in chaotic
and noisy? systems.
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1. Introduction1

Data-driven methods for analyzing complex high-dimensional2

systems have become very popular, and a goal is often to3

find an interpretable set of governing equations. These data-4

driven methods generally try to find an autonomous model for5

the dynamics, for example the recently developed Dynamic6

Mode Decomposition (DMD) which finds the best-fit linear7

model along with a low-dimensional set of basis functions, or8

Sparse Identification of Nonlinear Dynamics (SINDy), which9

similar but allows nonlinear terms. That is, they posit that the10

governing equations can be written as a differential equation11

of the form: ẋ = f(x). However, many systems of interest are12

connected to the outside world, have unmeasured degrees of13

freedom, or contain dynamics faster than can be measured.14

An example with a particularly large number of unmeasured15

variables is that of experimental neuroscience, where in general16

only a small portion of the brain can be measured. Thus in17

practice, the dynamics of the observed portion of the system18

are not autonomous, and appear to be forced by an outside19

“control signal,” “forcing term,” or “exogenous shock” that can20

be written as:21

ẋ = f(x) + δ(t) + ε(t) [1]22

where f(x) are intrinsic dynamics of interest, δ(t) is an un-23

known discrepancy, and ε(t) is white noise.24

The original DMD algorithm (1) was proposed by25

Schmidt for approximating autonomous, low-dimensional26

spatio-temporal dynamics in high-dimensional fluids. It was27

subsequently used in a wide variety of application areas includ-28

ing computer vision (2, 3), neuroscience (4), disease model-29

ing (5), finance (6), and fluid dynamics (1, 7–9). Control was30

added to produce DMD with control (DMDc) (10, 11), which31

has an equivalent mathematical form to Eq. 1. Taking the ex-32

ternal control signal into account allowed for both a drastically33

lower number of relevant dimensions and increased accuracy 34

of the recovered autonomous dynamics. Similar benefits were 35

realized in adding control to nonlinear systems (12). However, 36

these control signals must be known in advance, which is often 37

not the case for natural systems. 38

One approach for simultaneously learning a model and 39

unknown external forcing is the “discrepancy modeling” frame- 40

work (13–15). This fully Bayesian approach posits a model 41

of the same form as 1, where δ(t) is the “discrepancy” and is 42

generally modeled as a Gaussian process. This and similar 43

frameworks have been applied in many different real-world 44

settings, including ecology (16), robotics (17), and control 45

(18). Gaussian processes are very powerful in that they can 46

model nearly any smooth function, but this contributes to a 47

major difficulty with this framework: identifiability (19, 20). 48

That is, unless you have many different data sets (21) or can 49

guess the functional form of the discrepancy (22), there is no 50

clear way to separate out what is the external signal and what 51

is the intrinsic dynamics. 52

We propose a new partially Bayesian framework called 53

Sparse Residual Analysis (SRA)??? for learning sparsely ac- 54

tive control signals purely from data simultaneous with an 55

interpretable model of the intrinsic dynamics, allowing for 56

accurate reconstructions both of the underlying autonomous 57

system and the effects of the external signals. We do this 58

by building the posterior distribution of a set of uncontrolled 59

models, f(x), either linear (DMD) or nonlinear (SINDy). Sam- 60

pling from the posterior and comparing to data produces an 61

initial guess for dynamics that are outside of the initial model 62

structure, which forms a basis for approximating δ(t). We 63

test our method on linear, nonlinear, and chaotic systems 64

with external control signals, successfully learning the intrinsic 65

simple system as well as the control signals. 66

This paper proceeds as follows: Section II introduces the 67

background methods from statistical and machine learning; 68

Section III introduces our modified optimization problem and 69

practical subtleties with the algorithm; Section IV shows the 70

results of the method to decompose dynamics; and Section 71

V discusses future directions. The code for this framework is 72

freely available on GitHub in the programming language Julia, 73

heavily using advanced features from the DifferentialEquations 74

(23) and the Turing probabalistic programming packages (24). 75

2. Background Methods 76

Statistical Learning. As a complement to Machine Learning 77

methods which produce a black box prediction given data, 78

statistical learning methods seek to learn explicit and analyz- 79

able governing equations for a system, which can be linear or 80

nonlinear. 81
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Fig. 1. a) A simple example system: a bouncing ball. The intrinsic dynamics is the acceleration due to gravity, which is linear in the velocity-acceleration basis. The external
spatially-dependent forcing is provided by the ground, and in this example there is an additional time-dependent forcing, e.g. a kick. b) The observed data in this simple case
have obvious discontinuities, and the two types are easy to distinguish. c) The control signal provided by the ground, which is actually a function of space, and the external kick,
which is purely a function of time.

Truth-Model
Final Model
Controller

- --

Fig. 2. Beginning with data (in this case the Lorenz attractor with time-dependent external forcing), there are six steps to the model: 1. Fit a naive ODE. When integrated, this
reconstruction will be very poor. 2. Find the posterior distribution of residuals of this naive ODE to numerically calculated derivatives. Note that this uses a collocation method,
not integration. 3. Subsample the data, choosing the data points with small residual in the naive model. 4. Fit a “partial” model on the smaller sample of data. The control
signals will not be captured, but the intrinsic dynamics may be. If they are not fit well, then looping back to step 2 will increase the quality of the subsample. 5. Using the
residual of the final “partial” model, determine the control signals. 6. Fit the full control model, using control signals and data. This example is a chaotic system, so the individual
trajectory will never be well reconstructed. Rather, the goal is to reconstruct the attractor.
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DMD and DMDc. DMD provides a linear model for data matrices82

constructed using temporal snapshots of the state space, X =83

[x1 x2 . . . xm] and Ẋ = [ẋ1 ẋ2 . . . ẋm] where xj = x(tj).84

Specifically, it finds the best fit linear dynamical system85

Ẋ = AX [2]86

passing through the m snapshots of the statespace. There are87

a number of variants for computing A (1, 25? –29), with the88

exact DMD (25) simply constructing89

A = ẊX† [3]90

where † denotes the Moore-Penrose pseudo-inverse, which is91

a least-squares fitting procedure. However, in practice due92

to the size of matrix A in (3), the data is first projected93

onto the dominant correlated modes via the singular value94

decomposition before an eigen-decomposition is computed (30),95

i.e. a low-rank approximation is first computed.96

DMDc (11) leverages the advantages of DMD and pro-97

vides the additional innovation of disambiguating between the98

underlying dynamics and the effects of a known actuation sig-99

nal. For a control input matrix U = [u1 u2 . . . um−1] where100

uj = u(tj) is the actuation signal at time tj , DMDc regresses101

instead to the linear control system102

Ẋ = AX + BU [4]103

The DMDc method regresses to find the best matrices A and B104

in a least-squares sense given X1, X2 and U. Thus DMDc does105

not require knowledge of the underlying governing equations,106

only time snapshots of the state space and control input,107

making it compelling for systems whose governing equations108

are unknown. As with DMD, the DMDc algorithm capitalizes109

on underlying low-dimensional structure in the data by using110

the singular value decomposition to compute A and B in111

practice.112

SINDy and SINDYc. The SINDy algorithms have a parallel struc-113

ture to the DMD equations above:114

Ẋ = Φ(X)Ξ [5]115

And the formulation with control is similar:116

Ẋ = Φ(X)Ξ + BU [6]117

where Φ(X) is a library of nonlinear functions of the original118

data rows and Ξ is the sparse matrix of coefficients. Sparsity119

is enforced via an L1 norm or sequential least squares thresh-120

olding (12, 31), and significant parameters are determined via121

information theory metrics like AIC, as described in previous122

work (32).123

Discrepancy modeling. Many inverse problems, that is learn-124

ing a model structure and parameter values from data, are125

ill-posed TODO. There are multiple possible sources, and a126

major one is systematic discrepancy between the model and127

data due to the data being produced by a process that does128

not conform to the assumptions of the model. Seminal work129

has demonstrated how direct modeling attempts can fail to130

recover accurate dynamics, but they can be recovered if a131

discrepancy term is added, as in Eq. 1 (13–15). This is done132

by positing that δ(t) can be modeled by a Gaussian Process,133

i.e. a smooth function.134

We take an opposite approach, positing sparsely active 135

or spike-like control signals. In this view, although the in- 136

trinsic dynamics of the system could be modeled by Eqs. 5 137

or 2, a direct approach will not work because these external 138

perturbations are unknown. A key assumption is that these 139

external perturbations are sometimes weak or entirely absent, 140

allowing a subsampling procedure somewhat similar to (20). 141

Our approach then does not posit an explicit function form for 142

δ(t), but instead treats this control function as the statistically 143

significant deviations between the intrinsic dynamics and the 144

data, where statistically significant refers to an explicit noise 145

model made possible due to the Bayesian framework. This 146

method is more fully explained in the next section and in 147

algorithm 1. 148

3. New method: SRA?? 149

Residual Analysis??. Data generated from a linear process 150

with external shocks of the form in equation 4 can be fit using 151

an uncontrolled framework, for example via the least squares 152

method described in 3. In this case the regression matrix, 153

called Â, may be very different from the true linear dynamics 154

A, because it is trying to account for the external input BU. 155

However, if we knew the dynamics, it would be very easy to 156

discover the control signals via rearranging equation 4: 157

Ẋ−AX = BU [7] 158

Certainly, we do not know the true dynamics A, but in 159

many circumstances (TODO) Â can be used to approximate 160

this residual, and thus the control signals themselves. This 161

extends to the nonlinear case, and if any parameters are known 162

in advance these can be explicitly specified in this step. 163

Probabilistic Programming. It is possible to analyze a single 164

residual directly from equation 7. However, the residual of 165

any single model realization will be very sensitive to the exact 166

training data and noise. In some cases this sensitivity can be 167

mitigated, as shown in Fig. S3. A more statistically sound 168

alternative is to explore an ensemble of models, producing a 169

distribution of residuals. The presence of outliers beyond the 170

noise envelope is then very obvious, as the noise envelope is 171

explicitly modeled and fit. These outliers are then the initial 172

guess for the control signal, as shown in Fig. 2. 173

In addition, this Bayesian extension of the original SINDy 174

algorithm automatically produces a posterior distribution for 175

the model parameters as shown in Fig. 4. 176

SRA??. The full algorithm consists of a multi-step loop and 177

some preprocessing stages, as explained graphically in Fig. 178

2 and more generally in algorithm 1. Initially, the model 179

structure must be chosen, in this case either linear, as in Eq. 180

2 or nonlinear as is Eq. 5. This “naive” model is fit to the 181

derivative data. In some cases, particularly if the control 182

signals span multiple orders of magnitude, taking a random 183

intial subsampling can dramatically improve this naive model. 184

The next step is a loop that refines this initial model guess 185

via modeling a well-selected subset of the data. This subset 186

is the set of gradient points that is well reconstructed by 187

the naive, uncontrolled model. “Well reconstructed” refers 188

specifically to points whose errors are within a factor λ of 189

the noise envelope. Note that these are reconstructions of 190

the gradient itself via equation 1, and no integration of these 191
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Algorithm 1 Unsupervised Learning of Controlled Model
1: procedure LearnControlModel(X, Ẋ)
2: f̂0 := FitModelDistribution(Ẋ) . Eq. 2 or 5
3: for i← 1,MaxIter do
4: Ri := Ẋ− f̂i−1(Ẋ) . E.g. eq. 7
5: Ẋi,sub := Subsample(Ẋ,Ri, λ)
6: f̂i := FitModelDistribution(Ẋi,sub)
7: Ufinal := ProcessResidual(Rfinal) . Sparsify
8: Model := Fit(Ẋ,X, f̂final, Ufinal) . eq. 1

equations is performed. Last, once these “partial” models192

have converged or after a maximum number of iterations, the193

remaining residual between the final model and the data is194

processed to form the final control signal.195

There are three free hyperparameters or model choices196

in this algorithm. First, the class of models must be cho-197

sen. In this paper, either linear (DMD) or sparse nonlinear198

(SINDy) frameworks are chosen. Second, the threshold to use199

for subsampling the points using the residual and the noise200

envelope, λ. Third, the convergence criterion or maximum201

number of iterations. All examples in this paper required a202

single iteration.203

4. Results204

Separation of linear dynamics. Fig 1 gives a very simple ex-205

ample for a dataset with linear intrinsic dynamics that can206

be analyzed using this method. The governing equations are207

simply the action of gravity:208

v̇ = a

ȧ = −g
[8]209

where the gravitational constant g = 9.81. However, the210

two sources of external disturbance completely change the long-211

term behavior of the system, which would naturally simply212

fall forever. In addition, these control signals only act on a213

single variable directly: the acceleration. This means that a214

naive linear model, one that does not account for control, will215

successfully model the first term but not the second. The best216

fit least-squares model to this data is:217

v̇ = a

ȧ = −0.5v + 0.2a+ 7.5
[9]218

Extra terms appear, and “g” is incorrect. If this model219

is integrated as in Fig. 1.?? the reconstruction is very bad,220

however, this model is good enough to produce a good control221

signal when doing point prediction of the derivative. The222

residual between these point predictions and the data can be223

processed as shown in Fig. 2 to produce the control signals224

shown in Fig. 1.?? These control signals then produce a much225

more accurate set of intrinsic dynamics, with g = −9.812 ±226

0.05??227

Learning nonlinear, chaotic dynamics. Many dynamical sys-228

tems of interest are nonlinear, and many of these are chaotic.229

One classic example, which was originally designed as a sim-230

plified model of atmospheric convection (33):231

ẋ = σ(y − x)
ẏ = x(ρ− z)− y

ż = xy − βz
[10]232

Fig. 3. a) Voltage data from a spiking neuron model. The membrane recovery variable
(u) is not shown, but is provided to the algorithm. b) The “control signal” in this case
is then the fast nonlinearity, instead of a truly external input. The location is learned
very accurately but because it is modeled as a true discontinuity in the equations,
the exact amplitude of the derivative will depend sensitively on the sampling rate and
the exact method used to numerically differentiate. c) However, if a varying input
current is also applied, then this will show up as an additional control signal. d) The
reset nonlinearity and and external voltage are learned as a single control signal.
Importantly, the learned control signals are of very different orders of magnitude.

Fig. 4. Selected parameters are shown for the voltage (v) equation of Eq. 12. This
algorithm successfully learns parameter values spanning four orders of magnitude
with relatively small error. Note that even though there is no measurement error (white
noise), some errors accumulate due to numerical differentiation.
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where ρ = 28, σ = 10, and β = 8/3. This model can be233

sparsely represented with a few analytic terms, and can be234

recovered purely from data using the SINDy algorithm (31).235

An unforced version of the attractor is shown in Fig. 2.236

However, if there are external perturbations of unknown237

magnitude, frequency, and input dimension, then the SINDy238

algorithm will not successfully recover the dynamics. For the239

perturbed version of the attractor is shown in Fig. 2, the240

SINDy algorithm with 2nd order library terms produces:241

ẋ = −4.6x+ 6.0y − 0.4z + 20.4
ẏ = 23.6x+ 1.1y + 18.6− 0.9xz

ż = −2.7z + 1.0xy
[11]242

In this dataset, control was only applied to the first two243

variables (x and y), so the z equation is correct. Most of244

the terms are similar but one has changed signs, and several245

new erroneous terms have appeared. Integrating this naive246

model, as shown for the x variable in Fig. 2, produces very247

poor predictions. However, as Fig. 2 shows, as algorithm 1248

is applied, the correct attractor and equations are recovered249

along with the control signals.250

Learning nonlinear, spiking dynamics. A model discrepancy251

of the form in Eq. 1 may not be a true external input. In252

particular, it could be a nonlinearity that happens very quickly253

relative to data collection. One example is that of spiking254

neurons, in the which the “reset” after a spike is defined as255

instantaneous. A two dimensional model that can reproduce256

spiking patterns from different classes of neurons (34) is:257

v̇ = 0.04v2 + 5v + 140− u+ I

u̇ = a(bv − u)

if v ≥ 30 mV, then
{
v ← c

u← u+ d

[12]258

Where I is the input current, the constants are chosen259

as in the original paper to give v and t units of mV and260

ms, respectively. u is a membrane recovery variable, and the261

parameter values used here are those suggested: a = 0.02,262

b = 0.2, c = −65, d = 2. The input current, I, is 40 for the263

Constant Input neuron and is either 40 or 240 for the Variable264

Input case in Fig. 3.265

Discrepancy modeling as a field can have a problem of266

identifiability (19), where the model for the discrepancy cannot267

be distinguished from the core model. In this framework the268

discrepancy can be any time series, with the assumption that it269

is sparsely active, thus one identifiability problem can be that270

of multiple control signals. As shown in 1, the control from the271

ground and the external forcing are learned as part of the single272

time series that is input onto the second variable (acceleration).273

A similar phenomenon happens with these spiking neurons,274

where the “control signal” associated with resetting voltage275

cannot be disentangled from modulation in external current276

input, I, as demonstrated in Fig. 3. Nonetheless, the governing277

equations are reconstructed very well, as shown in Fig. 4.278

5. Discussion279

Many data-driven modeling techniques posit that the dynam-280

ics present are autonomous in the chosen modeling framework.281

However, this assumption may be violated in many ways, two282

of which have been treated here: connections to the outside 283

environment, and very fast nonlinearities. Our unsupervised 284

modeling framework explicitly accounts for these external in- 285

puts, and successfully models the underlying intrinsic dynamics 286

by pulling out the control signals or fast nonlinearities. 287

There are several assumptions that are necessary for good 288

numerical performance. For the examples studied in this paper 289

the intrinsic dynamics could be modeled by the imposed un- 290

controlled model, and in particular for the nonlinear examples, 291

the true dynamics were sparse in the measured basis. This 292

issue of finding the correct basis is an active field of research in 293

this field TODO. A less well studied issue is that of the types 294

of control signals that can be successfully separated out from 295

“intrinsic” dynamics. This paper dealt with smooth intrinsic 296

dynamics and effectively discontinuous control signals, which 297

were thus separable because they could not be modeled with 298

the uncontrolled model. However, the other extreme is more 299

common in many fields. A popular controller in engineering 300

and potentially in many biological systems is a PID controller, 301

which uses terms proportional to simple functions of the state 302

in order to acheive control. This is by design continuous, and 303

in many cases the controlled system can be written as the 304

uncontrolled system with a change of parameters. This algo- 305

rithm assumes that the structure and parameter values of the 306

intrinsic dynamics are unknown, and must be discovered along 307

with the control signal. However, if there is domain knowledge 308

of the intrinsic dynamics our algorithm may be extendable to 309

cases with smooth controllers, but this is outside the scope of 310

this work. 311

A separate limitation of this work is that a fully genera- 312

tive model is not produced. That is, extrapolation beyond 313

the training data can only be achieved for the uncontrolled, 314

intrinsic dynamics. Of course, if the control signal is truly ex- 315

ternal, then extrapolation that requires such knowledge is not 316

possible. However, if the “control signal” is actually a function 317

of phase space, for example the ground in the bouncing ball 318

example and the reset discontinuity in the neuron example, 319

a generative model is possible but is not learned. For future 320

work, it may be possible to separate out which portions of the 321

learned control signal can be modeled as some function of the 322

data, and which cannot. 323

A universal difficulty is that of white noise, which is mag- 324

nified in particular by two elements of the algorithm. First, 325

the need to take a numerical derivative, which is known to be 326

very sensitive to measurement noise. This is a well studied 327

problem (? ), but there are no universal answers. Second, 328

because the residual of a naive model is an object of study, it is 329

vulnerable to large fluctuations. This second issue is mitigated 330

by a Bayesian framework for fitting the uncontrolled model. 331

Analyzing the posterior distribution of these residuals is a 332

much more robust procedure than analyzing a single residual, 333

but there are still no theoretical guarantees. Recent work on 334

simultaneous denoising and derivative calculations could be a 335

fruitful area of future work (35). 336

Our algorithm adds to the landscape of data-driven algo- 337

rithms that derive symbolic governing equations and extends 338

the range of applicability into new problem domains. 339
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