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ABSTRACT

We develop a biophysically realistic model of the nematode
C. elegans that includes: (i) its muscle structure and acti-
vation, (ii) key connectomic activation circuitry, and (iii) a
weighted and time-dynamic proprioception. In combination,
we show that these model components can reproduce the
complex waveforms exhibited in C. elegans locomotive be-
haviors, such as omega turns. We show that weighted, time-
dependent synaptic dynamics are necessary for this complex
behavior, ultimately revealing key functions that must be ex-
ecuted at the connectomic level. Such dynamics are biolog-
ically plausible due to the presence of many neuromodula-
tors which have recently been experimentally implicated in
complex behaviors such as omega turns. This is the first inte-
grated neuromechanical model to reveal a mechanism capable
of generating the complex waveforms observed in the behav-
ior of C. elegans, thus providing a mathematical framework
for understanding how control decisions must be executed at
the connectome level in order to produce the full repertoire of
observed behaviors.

1. INTRODUCTION

Of general interest to the biology community is under-
standing how biomechanical systems process sensory input
to produce behavioral outcomes and robust control strategies.
Seemingly simple behavioral paradigms such as flying, crawl-
ing, and walking all involve complex interactions between
neuronal networks of sensory neurons, propioceptive feed-
back, and muscle activation. Understanding how these var-
ious networks interact to produce a robust control strategy re-
mains an open challenge. A model organism that can help elu-
cidate the control laws arising from these complex dynamics
is the Caenorhabditis elegans: a nematode with only 302 neu-
rons, 95 muscles involved in locomotion, and a well-mapped
and stereotyped connectome [1, 2]. Importantly, it has a lim-
ited behavioral repertoire that includes four primary motions:
forward crawling, backward crawling, omega turns and head
sweeps. In this manuscript, we explore a dynamic mechanism
that can produce the full repertoire of turns in C elegans in a
model optimized for forward motion.

Given its importance as a model organism, there has long
been an interest in modeling the behavior and locomotion of
the worm (see [4] for a recent review). Broadly, these ef-
forts (i) attempt to model the generation of locomotion within
the nervous system alone (e.g. [5, 6, 7, 8, 9, 10, 11, 12]),
(i1) model the biomechanics of the musculature/body alone
[3,13,14, 15,16, 17, 18, 19], or (iii) build an integrated model
for neural and bodily dynamics[20, 21, 22, 23, 24]. Most pre-
vious modeling efforts have focused on simulating the sim-
ple, sinusoidal bodily postures involved in forward locomo-
tion. It is unclear if said models could be extended to include
the more complex behaviors exhibited by the worm. Ulti-
mately, the full complexity of the dynamics may be captured

within future high-fidelity, fully three-dimensional particle-
based models involving the collaboration of hundreds of sci-
entists and modeling almost every aspect of the C. elegans
geometry and anatomy [25, 26]. To our knowledge the only
model previously shown to be capable of generating complex
postures is a non-integrated model of the body alone [3]. This
model stops short of considering the role of neuronal dynam-
ics and proprioception in generating complex postures.

Nonetheless, integrated neuromechanical models have gen-
erated considerable insight into C. elegans locomotion. A no-
table recent example is the integrated neuromechanical model
of Boyle, Berri and Cohen [23], a two-dimensional spring-
rod model which uses proprioception to generate sinusoidal
locomotion. The model incorporates proprioceptive feed-
back through specific stretch receptors, which have been long
hypothesized [34], and for which there is experimental evi-
dence [33, 34]. Via proprioceptive feedback, the model repli-
cated the experimentally-observed continuous modulation of
the worm’s forward motion gait in response to its environ-
ment [27]. However, this work considered only forward mo-
tion, and the model is unable to reproduce other typical be-
haviors such as backward motion, head sweeps, or omega
turns.

In this manuscript, we extend the model of Boyle, Berri
and Cohen [23], discovering the necessary modifications for
the model to produce the full range of complex C.elegans pos-
tures. Our modifications produce a single biomechanically re-
alistic model that can produce the full repertoire of behaviors,
including the “omega turn” in which the animal makes a deep
bend in order to reverse directions. We show that a traveling
wave of suppression on the stretch receptors is necessary and
sufficient for this complex behavior. This study suggests that
transient, extra-synaptic modulation of the synaptic weights
is necessary for complex behavior, which is a vital step for
understanding the control paradigm of the animal.

2. BIOMECHANICAL MODEL

We review the two-dimensional spring-rod model [23].
This model integrates our dynamic proprioception which gen-
erates the repertoire of observed behaviors.

2.1. Environmental properties

This model implements the drag coefficient of the body by
separating the parallel and perpendicular components. In rel-
atively low viscosity media similar to water, the drag coeffi-
cients can be analytically calculated [36], and in highly vis-
cous media like agar, these coefficients have been experimen-
tally estimated [27, 20]. In the model, the medium is a lin-
early tunable parameter that varies from O (water) to 1 (agar),
as shown in table 1.
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Fig. 1: Biomechanical model of C elegans. Based off of [23]. a) The body has 12 segments. (b) and (c) Each segment has two rigid vertical components
and four damped spring components. The diagonal (blue) elements are passive; the horizontal (red) elements are active and controlled by the neuron voltages.
d,e) Each segment also has a simplified connectome model, with four pairs of ventral and dorsal motor neurons, and a pair of excitatory B-class neurons and
inhibitory D-class neurons. These are activated by a toy “AVB-like” command neuron, for forward motion. f) Proprioception produces oscillation and more
complex behavior. A small curvature will produce almost no proprioceptive signaling, but a stretched segment will.

2.2. Model components

The two-dimensional model of the C. elegans has long
been considered a compromise between feasibility and accu-
racy [37], i.e. it is a parsimonious model that balances com-
plexity with accurate biomechanics. The two-dimensional
structure is motivated by the laboratory environment where
nearly the entire body moves only in two dimensions along a
surface. The only truly three-dimensional behaviors are ex-
ploratory head motions, which are outside the scope of this
study.

2.2.1. Body Shape and Segmentation

The C. elegans body, as shown in Fig. 1, is composed of
12 segments organized into 3 different layers of interaction.
This approximates the known muscle structure: C. elegans
has 48 dorsal and 47 ventral muscles, though the body itself
is not segmented. A segment refers to 8 passive vertical and

diagonal elements containing a set of 4 dorsal and 4 ventral
muscles, a pair of stretch receptors, and a pair each of A-
and B-class neurons. The body is further divided into 48 sub-
segments, 4 per full segment, such that each has a pair of
lateral, diagonal, and vertical elements and a single muscle.

The two-dimensional cross-section of the body is approxi-
mated by an ellipsoid, with the radius of each of the M = 48
sub-segments given by:

— (M/2+1
sin <arccos (%)) ‘ (1)
where R; is the radius of the ith body segment and Ry is
maximium radius.

R; = Ry

2.2.2. Rod spring model
The first modeling component is a rod-spring system with
passive vertical and diagonal elements, as well as active



muscle-driven lateral elements. The vertical rod elements are
of a fixed length 2R;, given by equation 1, and enforce the
biological constraint that the radius of the body is nearly con-
stant throughout normal behavior.

The diagonal elements are damped springs that model hy-
drostatic internal forces. The force from each diagonal ele-
ment for the ¢th body segment is given by:

£ =kp (Lop,; — L% ;) + Bpoh )

where Op and kp are the spring and damping constants, and
Lop,; = \/Lgeg + (R; + Ri+1)2 is the rest length. In addi-

tion, v; = %Lf is the rate of change of the length of each
element. The subscripts D and, in the next equation, L, refer
to either the diagonal or lateral elements. The superscript k
denotes which side of the animal (dorsal or ventral) is being
considered and which subnetwork is characterized (A-class or
B-class). It can thus take on 4 distinct values. Values are iden-
tical across the subnetworks unless otherwise noted. The lat-
eral elements are also damped springs, but these are actively
driven by the motor neurons,

KL (LOL,i—L’E,z') + BLUE,i
. for leﬂ‘ < Lor
L=k, [(LOL,i*LIZ,i) +2 (LoLyi—L’Li)Zl] + Brof ;

otherwise

3)
The rest length for the lateral elements is slightly different:
Lop; = \/Lgeg +(R; — Ri+1)2. The force output of a given
muscle segment is a function of the motor neuron voltage,
the muscle length, and the rate of contraction. In addition,
a gradient was imposed on the maximum output force of the
muscles, reflecting experimentally observations

f}f“ = '%?V[,i (Lghf,i - lez) + ﬁ]kM,iUE,i (€]

with
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and where L,,;, is a minimum muscle length for each sub-
segment, normalized to have the same maximum curvature.
The function G’jv M 1s a linearly decreasing function from
the initiation of the propagation that captures the experimen-
tal fact that curvature decreases as the wave propagates. Addi-
tionally, o () is a linearized sigmoidal function of the muscle
activation:
0 , <0
o(z)=<z , 0<z<1 (6)
1, x>1

Parameter Value
M 48
N 12
L Imm
| D L/M
CLyater 1.65-107/ (M + 1)
CNyater 2.6-1076/(M+1)
CLgur 1.6-1073/ (M +1)
CN,gar 64-1073/ (M +1)
KL, 0.02 kg - s 1
KD KRr, - 350
KoM Ky, * 20
BL KRp, * 0.025s
BD Kp - 0.01s
Bonr Bz - 100
Lor,m \/Lieg + Ry —Rpgr)?
Lopm | /L2 + Ron +Ryir)?
YANY; 0.65 (R, + Rypy1)
Lmin,m LOL,m 1—21A{M
Ry 40pm
€hyst 0.5

2.2.3. Motor neurons

A second critical component of the model is a simplified
connectomic structure. In each segment, the pair of 4 mus-
cles receive input from two separate classes of excitatory neu-
rons. These A- and B-class motor neurons form separate sub-
networks that are experimentally well-known to be active in
backwards and forwards motion, respectively. Each neuron is
modeled as bistable neuron which transitions instantanteously
and is either “on” or “off,” S = {0, 1}.

Sk —

K3

{1 for Ilk > 0.5+ €hys (05 - SS) (7)

0 otherwise

Although there is some evidence that muscles display graded
transmission [41], there is also biological evidence for bista-
bility in the worm [42, 32, 31]. Previous work addressing this
issue explicitly [23] found no significant difference in behav-
ior when the neurons were modeled using a continuous model
of the membrane voltage. The current term is composed of
three inputs into each of these motor neurons, given by cross-
inhibition, a “command” neuron, and proprioception:

IF = wh S+ I,]XVA/AVB + 15, ®)

The first two terms are explained in detail in the following
paragraphs while the third, which contains the key contribu-
tions of this work, is detailed in the next section.

In the real worm the contralateral inhibitory GABA-ergic
D-class neurons synchronize muscle contractions so that
when one side is contracting the other is relaxing. These D-
class neurons are connected to the A- and B-class neurons and



their activity is highly correlated. Thus in this model, cross-
inhibition is applied directly in proportion to the activity of
the excitatory neurons on the opposite side, and is captured
in the term w* S¥. The second superscript, k, refers to the
opposite side of the animal (dorsal or ventral).

In the full connectome, these motor neurons are part of
larger locomotion circuits and this is modeled here as the sec-
ond input, from a single command neuron. This approxima-
tion does not assume that there exists a CPG for the produc-
tion of oscillatory behavior, but is not incompatible with a
hybrid CPG and proprioceptive mechanism. Which (DC) cur-
rent a neuron receives depends on which subnetwork it is part
of, with A-class (backwards) neurons receiving current from
the command “AVA,” and B-class (forwards) neurons receiv-
ing current from command “AVB.”

3. PROPRIOCEPTION

We now review the proprioceptive components of the
model and introduce our modifications towards a more gen-
eral dynamic model of proprioception.

3.1. Stretch receptor current

The remaining input (8) into the motor neurons, 7% Ri» 18
also the final component of the biomechanical model: pro-
prioception. Stretch receptors have long been hypothesized
to exist due to long, undifferentiated “arms” that extend from
the A- and B-class motorneurons down the length of body
[34]. Shown in Fig. 1 is how a stretched body segment pro-
duces a strong signal for the posterior body segments on the
same side, and a weak to non-existent one on the opposite
side. The number of segments to be summed over is given
by a parameter s = min (M; Ngg + (n — 1)Nyyt), which is
a constant determined by the number of remaining posterior
body segments. The full sum is

S
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The term (1 — «(t)) is the time dependent term that allows for

dynamic suppression of this current, and will be explained in

the next section. The parameter A; compensates for the fact

that for segments close to the posterior of the animal, there

7(n_

are fewer segment contributions. Additionally, the parameter

0.65 - (o.4+o.08.(N_i_1).#)

S for k=A
fpi = . 2Nseq
0.65 - (0.4+0.08 - =)
for k=B

1D
is a gradient that increases posteriorly for forward motion (B
class) and anteriorly for backward motion (A class), to make
the receptors more sensitive to the decreased curvature of the
body (shown in figure 3). Finally,

k
v LL.m — Lor,m

hY = Ak, (12)
7 Lor,m
is a stretch receptor activation function with parameters:
2Ry
ANi= ——F7— 13
Ri+ Ri1 (13

which compensates for the variable radius of each segment
with
1 , k=V
v =208 |, k=D; L} . >Lopm (14
1.2 s k= D; Ll[i,m < LOLtm

which compensates for the previously mentioned asymmetry
in the inhibitory circuit. The proprioceptive stretch sensors
form the fundamental oscillatory mechanism of the model.

An important note is that proprioceptive feedback for for-
ward motion in our model can be described as an anteriorly
directed signal encouraging contraction from a stretched pos-
terior segment, which is consistent with the physiology of the
B motor neurons [1]. In contrast, Quen et al. in [34] provide
experimental evidence that proprioception acts as a posteri-
orly directed signal for contraction from a contracted anterior
segment. It is possible that both of these mechanisms are cor-
rect, and possible distinguishing experiments are discussed
later in this manuscript.

3.2. Dynamics of proprioception

Unlike simple forward and backward locomotion, which
are long-lived oscillations of the network, the omega turn is
a transient behavior which only lasts on the order of a few
seconds. We phenomenologically model this as a wave of
modulation in neuron properties that travels posteriorly along
the body. Though the behavior is robust to these details, the
functional form used is a two-sided sigmoidal function:

tstart)) — tanh (s (t — tena))] (15)

1
at) = 3 [tanh (s (t —
where ¢4+ and t.,q are respectively the initiation and com-
pletion of wave, and s models the speed at which this suppres-
sion takes effect. This function can be used to smoothly tune
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Fig. 2: A wave of suppression on the stretch receptors produces an omega turn. The percent suppressed is shown, which travels along lasting approximately 5
seconds. The snapshots on the right are at the same times as the bold cross sections of the figure on the left.

a parameter to 0 and then back to its full value, as well as in-
creasing or decreasing parameters by a percentage using 1 —«
and 1 4 «, respectively. This addition to the original model is
vital for complex and transient behaviors like the omega turn
and other shallow turns, and is implemented in equation 9.

3.3. Numerical modeling

The original model used Sundials version 2.3.0 [23]; this
paper uses version 2.6.1. The numerical simulation portion of
the code is written in C++. Based on the original paper, a vi-
sualization package written in MATLAB 2016D is included.
The model and dynamics proposed here are all fully repro-
ducible, with the code and example datasets openly available
at [45]

4. RESULTS

We show our model can produce omega turns and other
known behaviors within the model using the dynamics of pro-

prioception.

4.1. Backwards motion

There are three main front-to-back asymmetries that bias
the original model towards forwards motion. Two of them are
shown in Fig. 3. For forward motion they are: a decrease in
muscle strength along the length of the body, and an increase
in stretch sensitivity to partially compensate for this.

Importantly, the A- and B-class subnetworks of neurons
have “arms” extending in opposite directions down the length
of the body [1], and this is modeled as a stretch producing
a signal in the anterior body segments for the A neurons. In
this way, backwards motion can be plausibly and simply mod-
eled using a mirrored subnetwork of motor neurons with op-
positely aligned stretch receptors.

4.2. Optimized stretch receptors

Proprioceptive receptors have long been postulated, but
though there are very suggestive experiments [34, 33, 35],
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Fig. 3: Asymmetries needed to produce backwards and forward motion. a)
The nueromuscular junctions (NMJs) decrease in strength as you travel pos-
teriorly (anteriorly) along the body for forward (backward) motion and B-
(A-) class neurons. The head (tail) is weakened in the original model in order
to produce straight forward motion, and there is recent experimental evidence
that the head circuit is fine tuned in a similar way [46]. b) Partially to com-
pensate for the decrease in NMJ strength, the stretch receptor sensitivity is
increased as you travel posteriorly (anteriorly) along the body for forward
(backward) motion.

it is not known through what mechanism the worm senses
stretching. Physiological data reveals the presence of long
undifferentiated “arms” that stretch away from the B- and A-
class motor neurons for approximately a quarter of the body
length, but their function is unknown. In order to contribute
to constraints on this hypothesis, which is necessary for both
simple and complex behaviors in this model, studies on the
effect of changing the length of the body receptors on speed
of forward motion and other metrics were performed. Fig-
ure 4 shows that there is a maximum center of mass velocity
for proprioceptive sensors of length equal to approximately
5-6 segments, which would allow each segment to receive in-
formation about one half wavelength in agar. The more pro-
nounced feature of figure 4 is the drastic decrease in speed
for very short stretch receptors of approximately 1-2 segment
lengths.

4.3. Traveling waves of suppression produce omega turns

The addition of a set of parameters that controls a wave of
suppression on the stretch receptors along the body wall is
enough to realistically produce an omega turn in the model.
Figure 2 shows a ventral turn, though this mechanism can pro-
duce turns to either side.

In order to understand this behavior, it is instructive to un-
derstand what happens to the different body segments as the
wave passes through them. When the wave is initialized in
the head segment (segment 1), the head becomes less able to
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Fig. 4: Average Center Of Mass velocity for regular forward motion as a
function of the length of the stretch receptors, measured in body segments.

sense the curvature of the segments immediately posterior. As
the wave travels across the next few segments, the first third
of the body continues to tighten its turn because the proprio-
ceptive input is no longer present to stimulate the dorsal mus-
cles, those opposite to those currently active. This tightening
continues until the wave passes and the first segments slowly
become able to sense the extreme curvature of the first half of
the body. The head then starts to unwind, producing a smooth
and, depending on the exact parameters, complete change in
direction of motion. By tuning the timescale of this wave, the
mechanism is able to produce turns of any amplitude.

The continued suppression of the stretch receptors on the
posterior half of the body once the head has started to re-
sume normal forward motion is vital to the success of this
maneuver. In a realistic omega turn the rest of the body fol-
lows the head through the highly curved “omega” shape. This
deep bending is resisted by any part of the body in which
the proprioceptive signals remain unchanged, something ob-
served in our model (data not shown). Non-traveling sup-
pression of stretch receptors in one part of the body produces
various types of thrashing behavior, paralysis, or changes in
gait. Furthermore, the forward momentum through the curv-
ing head bend must be produced by the continued undulations
of the posterior half of the body. Thus, if this proprioceptive
hypothesis is correct, a traveling suppression of signals from
the stretch receptors is qualitatively necessary.

4.4. Robustness of omega turns

As discussed in [47], a model of a complex system that
uses average values of parameters, as this model does, of-
ten gives non-average results. Therefore, it is paramount to
demonstrate this behavior in an ensemble of models with dif-
ferent internal parameters, and a sensitivity analysis is shown
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Fig. 5: Angle change as a function of various body parameters. Displayed
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als with up to 10% variation in these parameters: D.= damping coefficient;
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in Fig. 5. Though the model is relatively sensitive to overall
body length, even in this case the turning angle only changed
about 0.2 radians, thus suggesting the mechanism is robust in
producing omega turns.

5. DISCUSSION

We have presented a biophysically realistic model that can
reproduce the essential repertoire of C. elegans locomotive
behaviors: forward motion, backward motion, head sweeps
and omega turns. Recent work has shown that extra-synaptic
modulation is important in more complex behavioral patterns
in C. elegans [38], and this is the first biomechanical model to
our knowledge that uses this information and proposes an in-
terpretable mechanism for behaviors beyond forward motion.

This model relies fundamentally on the hypothesis that
there exist stretch receptors in C. elegans, and that they are
posteriorly (anteriorly) directed for B(A)-class neurons. The
model further allows for testable predictions about the char-
acteristics of those receptors. Specifically, there must be
some type of suppression of the signal sent by those recep-
tors for deep turning behaviors like the omega turn to exist.
Mutant studies should be able to identify potential chemi-
cal or neural control candidates, which in turn might help
illuminate the network involved in proprioception. Another
class of experimental tests is through optogenetic manipula-
tion of worms trapped in microfluidic devices along the lines
of Quen et al. [34]. If neurons associated with omega turns,
e.g. RIV, SMDV, or RIM, are stimulated and a transient
down-regulation of the proprioceptive signal is measured, that
would be strong evidence for this mechanism.

A traveling wave of modulation, specifically suppression,
on the proprioceptive stretch receptors is required to robustly
produce omega turns, but we also found that an increase in
muscle strength can drastically improve the turning angles of
the worm. Though it is possible that the muscle activation

is modulated during this behavior, quantitative statements are
complicated by many approximations. These issues are dis-
cussed in more depth in the original model paper [23]. Thus,
unlike the qualitative proposal of a modulatory mechanism on
the stretch receptors, no strong quantitative statement can be
made about the muscle dynamics themselves.

A general goal of C. elegans research is to understand how
sensory information is transmuted into behaviors that exist on
many different time scales. One step towards understanding
this process is through finding the control mechanisms of the
neural network that physically cause those behaviors. The
ability of a single model to produce all of these behaviors
helps elucidate the control structure of C. elegans, and can
help inform what types of outputs must be produced by the
internal dynamics of the network [8]. Omega turns and the
type of modulation required to produce them were a critical
contribution of this paper. The posited mechanism can also
produce much shallower or deeper turns, both of which have
been proposed as distinct categories of behavior [43, 44].

Much recent modeling work has contributed to discussions
surrounding simple behaviors like forward motion, and we
hope that this paper can contribute to similar discussions of
more complex behavioral dynamics involving omega turns.
Importantly, we have illustrated that dynamic processes can
play a critical role in controlling the C. elegans repertoire of
behavior. In future work, we hope to integrate the connec-
tomic dynamics with the proposed biomechanial model in or-
der to understand the “inside” and “outside” of the worm and
how the connectome serves as the controller for behavioral
outputs.
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